Optimized Boundary Conditions and Data Assimilation with Application to theM2Tide in the Yellow Sea

Author(s):  
Igor Shulman ◽  
James K. Lewis ◽  
Alan F. Blumberg ◽  
B. Nicholas Kim
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xiaoyu Gao ◽  
Shanhong Gao

Numerical modeling of sea fog is highly sensitive to initial conditions, especially to moisture in the marine atmospheric boundary layer (MABL). Data assimilation plays a vital role in the improvement of initial MABL moisture for sea fog modeling over the Yellow Sea. In this study, the weather research and forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation module are employed for sea fog simulations. Two kinds of background error (BE) covariances with different control variables (CV) used in WRF-3DVAR, that is, CV5 and multivariate BE (CV6), are compared in detail by explorative case studies and a series of application experiments. Statistical verification metrics including probability of detection (POD) and equitable threat scores (ETS) of forecasted sea fog area are computed and compared for simulations with the implementations of CV5 and CV6 in the WRF-3DVAR system. The following is found: (1) there exists a dominant negative correlation between temperature and moisture in CV6 near the sea surface, which makes it possible to improve the initial moisture condition in the MABL by assimilation of observed temperature; (2) in general, the performance of the WRF-3DVAR assimilation with CV6 is distinctly better, and the results of 10 additional sea fog cases clearly suggest that CV6 is more suitable than CV5 for sea fog modeling. Compared to those with CV5, the average POD and ETS of forecasted sea fog area using 3DVAR with CV6 can be improved by 27.6% and 21.0%, respectively.


Author(s):  
Xiaoyu Gao ◽  
Shanhong Gao ◽  
Yue Yang

The data assimilation method to improve sea fog forecast over the Yellow Sea is usually three-dimensional variational assimilation (3DVAR), whereas ensemble Kalman filter (EnKF) has not yet been applied on this weather phenomenon. In this paper, two sea fog cases over the Yellow sea, one spread widely and the other spread narrowly along the coastal area, are studied in detail by a series of numerical experiments with 3DVAR and EnKF based on the Grid-point Statistical Interpolation (GSI) system and the Weather Research and Forecasting (WRF) model. The results show that the assimilation effect of EnKF outperforms that of 3DVAR: for the widespread-fog case, the probability of detection and equitable threat scores of the forecasted sea fog area get improved respectively by ~57.9% and ~55.5%; the sea fog of the other case completely mis-forecasted by 3DVAR is produced successfully by EnKF. These improvements of EnKF relative to 3DVAR are benefited from its flow-dependent background error, resulting in more realistic depiction of sea surface wind for the widespread-fog case and better moisture distribution for the other case in the initial conditions. More importantly, the correlation between temperature and humidity in the background error of EnKF plays a vital role in the response of moisture to the assimilation of temperature, which leads to a great improvement on the initial moisture conditions for sea fog forecast.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kun Liu ◽  
Wuhong Guo ◽  
Lianglong Da ◽  
Jingyi Liu ◽  
Huiqin Hu ◽  
...  

AbstractTargeted observation is an appealing procedure for improving model predictions. However, studies on oceanic targeted observations have been largely based on modeling efforts, and there is a need for field validating operations. Here, we report the results of a field targeted observation that is designed based on the sensitive areas identified by the Conditional Nonlinear Optimal Perturbation approach to improve the 7th day thermal structure prediction in the Yellow Sea. By introducing the technique of cycle data assimilation and the new concept of time-varying sensitive areas, an observing strategy is designed and validated by a set of Observing System Simulation Experiments. Then, the impact of targeted observations was investigated by a choreographed field campaign in the summer of 2019. The results of the in-field Observing System Experiments show that, compared to conventional local data assimilation, conducting targeted observations in the sensitive areas can yield more benefit at the verification time. Furthermore, dynamic analysis demonstrates that the refinement of vertical thermal structures is mainly caused by the changes in the upstream horizontal temperature advection driven by the Yellow Sea Cold Water Mass circulation. This study highlights the effectiveness of targeted observations on reducing the forecast uncertainty in the ocean.


2013 ◽  
Vol 18 (6) ◽  
pp. 1335-1342
Author(s):  
Zhenbo LU ◽  
Bingqing XU ◽  
Fan LI ◽  
Mingyi SONG ◽  
Huanjun ZHANG ◽  
...  

2011 ◽  
Vol 31 (5) ◽  
pp. 73-78
Author(s):  
Huijun LI ◽  
Xunhua ZHANG ◽  
Shuyin NIU ◽  
Kaining YU ◽  
Aiqun SUN ◽  
...  

2018 ◽  
Vol 25 (3) ◽  
pp. 576 ◽  
Author(s):  
Shuzhang LIANG ◽  
Wei SONG ◽  
Ming ZHAO ◽  
Wei CHEN ◽  
Yu LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document